Stability of the multi-solitons of the modified Korteweg–de Vries equation *

Author:

Le Coz StefanORCID,Wang ZhongORCID

Abstract

Abstract We establish the nonlinear stability of N-soliton solutions of the modified Korteweg–de Vries (mKdV) equation. The N-soliton solutions are global solutions of mKdV behaving at (positive and negative) time infinity as sums of one-solitons with speeds 0 < c 1 <…< c N . The proof relies on the variational characterization of N-solitons. We show that the N-solitons realize the local minimum of the (N + 1)th mKdV conserved quantity subject to fixed constraints on the N first conserved quantities. To this aim, we construct a functional for which N-solitons are critical points, we prove that the spectral properties of the linearization of this functional around an N-soliton are preserved on the extended timeline, and we analyze the spectrum at infinity of linearized operators around one-solitons. The main new ingredients in our analysis are a new operator identity based on a generalized Sylvester law of inertia and recursion operators for the mKdV equation.

Funder

Agence Nationale de la Recherche

China National Natural Science Foundation

Guang-Dong Natural Science Foundation

China Scholarship Council

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference58 articles.

1. A uniqueness result for two-soliton solutions of the Korteweg–de Vries equation;Albert;Discrete Contin. Dyn. Syst.,2019

2. On the stability of KdV multi-solitons;Albert;Differ. Integr. Equ.,2007

3. Nonlinear stability of MKdV breathers;Alejo;Commun. Math. Phys.,2013

4. The Gardner equation and the L 2-stability of the N-soliton solution of the Korteweg–de Vries equation;Alejo;Trans. Am. Math. Soc.,2013

5. Multi-solitary waves for the nonlinear Klein–Gordon equation;Bellazzini;Commun. PDE,2014

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3