Collapse dynamics for two-dimensional space-time nonlocal nonlinear Schrödinger equations

Author:

Cole Justin TORCID,Aurko Abdullah M,Musslimani Ziad HORCID

Abstract

Abstract The question of collapse (blow-up) in finite time is investigated for the two-dimensional (non-integrable) space-time nonlocal nonlinear Schrödinger equations. Starting from the two-dimensional extension of the well known AKNS q , r system, three different cases are considered: (i) partial and full parity-time (PT) symmetric, (ii) reverse-time (RT) symmetric, and (iii) general q , r system. Through extensive numerical experiments, it is shown that collapse of Gaussian initial conditions depends on the value of its quasi-power. The collapse dynamics (or lack thereof) strongly depends on whether the nonlocality is in space or time. A so-called quasi-variance identity is derived and its relationship to blow-up is discussed. Numerical simulations reveal that this quantity reaching zero in finite time does not (in general) guarantee collapse. An alternative approach to the study of wave collapse is presented via the study of transverse instability of line soliton solutions. In particular, the linear stability problem for perturbed solitons is formulated for the nonlocal RT and PT symmetric nonlinear Schrödinger (NLS) equations. Through a combination of numerical and analytical approaches, the stability spectrum for some stationary one soliton solutions is found. Direct numerical simulations agree with the linear stability analysis which predicts filamentation and subsequent blow-up.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3