On Hölder solutions to the spiral winding problem

Author:

Fraser Jonathan MORCID

Abstract

Abstract The winding problem concerns understanding the regularity of functions which map a line segment onto a spiral. This problem has relevance in fluid dynamics and conformal welding theory, where spirals arise naturally. Here we interpret ‘regularity’ in terms of Hölder exponents and establish sharp results for spirals with polynomial winding rates, observing that the sharp Hölder exponent of the forward map and its inverse satisfy a formula reminiscent of Sobolev conjugates. We also investigate the dimension theory of these spirals, in particular, the Assouad dimension, Assouad spectrum and box dimensions. The aim here is to compare the bounds on the Hölder exponents in the winding problem coming directly from knowledge of dimension (and how dimension distorts under Hölder image) with the sharp results. We find that the Assouad spectrum provides the best information, but that even this is not sharp. We also find that the Assouad spectrum is the only ‘dimension’ which distinguishes between spirals with different polynomial winding rates in the superlinear regime.

Funder

Leverhulme Trust

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference15 articles.

1. Dimensions des spirales;Dupain;Bul. Soc. Math. France,1983

2. The Navier–Stokes-alpha model of fluid turbulence;Foias;Physica D,2001

3. Unwinding spirals I;Fish;Methods Appl. Anal.,2018

4. The Assouad spectrum and the quasi-Assouad dimension: a tale of two spectra;Fraser;Ann. Acad. Sci. Fenn. Math.,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractal Dimensions in Circular and Spiral Phenomena;Circuits, Systems, and Signal Processing;2023-08-27

2. Generalised intermediate dimensions;Monatshefte für Mathematik;2023-07-18

3. Intermediate dimensions of infinitely generated attractors;Transactions of the American Mathematical Society;2023-01-24

4. Quasiconformal distortion of the Assouad spectrum and classification of polynomial spirals;Bulletin of the London Mathematical Society;2022-09-13

5. The fractal structure of elliptical polynomial spirals;Monatshefte für Mathematik;2022-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3