A numerical study of rigidity of hyperbolic splittings in simple two-dimensional maps

Author:

Bandtlow Oscar FORCID,Just WolframORCID,Slipantschuk JuliaORCID

Abstract

Abstract Chaotic hyperbolic dynamical systems enjoy a surprising degree of rigidity, a fact which is well known in the mathematics community but perhaps less so in theoretical physics circles. Low-dimensional hyperbolic systems are either conjugate to linear automorphisms, that is, dynamically equivalent to the Arnold cat map and its variants, or their hyperbolic structure is not smooth. We illustrate this dichotomy using a family of analytic maps, for which we show by means of numerical simulations that the corresponding hyperbolic structure is not smooth, thereby providing an example for a global mechanism which produces non-smooth phase space structures in an otherwise smooth dynamical system.

Funder

Deutsche Forschungsgemeinschaft

Engineering and Physical Sciences Research Council

FP7 Ideas: European Research Council

Publisher

IOP Publishing

Reference33 articles.

1. Quasirandom dynamical systems I: quasirandom diffeomorphisms;Alekseev;Math. USSR Sb.,1968

2. Geodesic flows on Riemann manifolds with negative curvature;Anosov;Proc. Steklov Inst.,1967

3. On the discrete time version of the Brussels formalism;Bandtlow;J. Phys. A: Math. Gen.,1994

4. Spectral structure of transfer operators for expanding circle maps;Bandtlow;Ann. Inst. Henri Poincare C,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3