Abstract
Abstract
We study the long-time behaviour of the unique weak solution of a nonlocal regularisation of the (inviscid) Burgers equation where the velocity is approximated by a one-sided convolution with an exponential kernel. The initial datum is assumed to be positive, bounded, and integrable. The asymptotic profile is given by the ‘N-wave’ entropy solution of the Burgers equation. The key ingredients of the proof are a suitable scaling argument and a nonlocal Oleinik-type estimate.
Funder
European Research Executive Agency
Madrid Goverment
European Cooperation in Science and Technology
Ministero dell’Istruzione, dell’Università e della Ricerca
Alexander von Humboldt-Stiftung
Deutsche Forschungsgemeinschaft
Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics