Abstract
Abstract
We prove the asymptotic stability of a finite sum of well-ordered solitary waves for the Zakharov–Kuznetsov equation in dimensions two and three. We also derive a qualitative version of the orbital stability result, which will be useful for studying the collision of two solitary waves in a forthcoming paper.
The proof extends the ideas of Martel, Merle and Tsai for the sub-critical gKdV equation in dimension one to the higher-dimensional case. It relies on monotonicity properties on oblique half-spaces and rigidity properties around one solitary wave introduced by Côte, Muñoz, Pilod and Simpson in dimension two, and by Farah, Holmer, Roudenko and Yang in dimension three.