Author:
Chikami Noboru,Ikeda Masahiro,Taniguchi Koichi
Abstract
Abstract
We study the Cauchy problem for the semilinear heat equation with the singular potential, called the Hardy–Sobolev parabolic equation, in the energy space. The aim of this paper is to determine a necessary and sufficient condition on initial data below or at the ground state, under which the behavior of solutions is completely dichotomized. More precisely, the solution exists globally in time and its energy decays to zero in time, or it blows up in finite or infinite time. The result on the dichotomy for the corresponding Dirichlet problem is also shown as a by-product via comparison principle.
Funder
Japan Society for the Promotion of Science
Japan Science and Technology Agency
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献