A Cahn–Hilliard phase field model coupled to an Allen–Cahn model of viscoelasticity at large strains

Author:

Agosti AORCID,Colli P,Garcke H,Rocca E

Abstract

Abstract We propose a new Cahn–Hilliard phase field model coupled to incompressible viscoelasticity at large strains, obtained from a diffuse interface mixture model and formulated in the Eulerian configuration. A new kind of diffusive regularization, of Allen–Cahn type, is introduced in the transport equation for the deformation gradient, together with a regularizing interface term depending on the gradient of the deformation gradient in the free energy density of the system. The designed regularization preserves the dissipative structure of the equations. We obtain the global existence of a weak solution in three space dimensions and for generic nonlinear elastic energy densities with polynomial growth, comprising the relevant cases of polyconvex Mooney–Rivlin and Ogden elastic energies. Also, our analysis considers elastic free energy densities which depend on the phase field variable and which can possibly degenerate for some values of the phase field variable. We also propose two kinds of unconditionally energy stable finite element approximations of the model, based on convex splitting ideas and on the use of a scalar auxiliary variable respectively, proving the existence and stability of discrete solutions. We finally report numerical results for different test cases with shape memory alloy type free energy, showing the interplay between phase separation and finite elasticity in determining the topology of stationary states with pure phases characterized by different elastic properties.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference26 articles.

1. A Cahn-Hilliard model coupled to viscoelasticity with large deformations;Agosti,2022

2. Existence and approximation of a (regularized) Oldroyd-B model;Barrett;Math. Models Methods Appl. Sci.,2011

3. Existence of weak solutions to an evolutionary model for magnetoelasticity;Benesova;SIAM J. Math. Anal.,2016

4. Fluid mechanics revisited;Brenner;Physica A,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stress‐modulated growth in the presence of nutrients—Existence and uniqueness in one spatial dimension;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2023-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3