Lower bounds on the Hausdorff dimension of some Julia sets

Author:

Dudko Artem,Gorbovickis Igors,Tucker Warwick

Abstract

Abstract We present an algorithm for a rigorous computation of lower bounds on the Hausdorff dimensions of Julia sets for a wide class of holomorphic maps. We apply this algorithm to obtain lower bounds on the Hausdorff dimension of the Julia sets of some infinitely renormalizable real quadratic polynomials, including the Feigenbaum polynomial p F e i g ( z ) = z 2 + c F e i g . In addition to that, we construct a piecewise constant function on [ 2 , 2 ] that provides rigorous lower bounds for the Hausdorff dimension of the Julia sets of all quadratic polynomials p c ( z ) = z 2 + c with c [ 2 , 2 ] . Finally, we verify the conjecture of Ludwik Jaksztas and Michel Zinsmeister that the Hausdorff dimension of the Julia set of a quadratic polynomial p c ( z ) = z 2 + c , is a C 1-smooth function of the real parameter c on the interval c ( c F e i g , 3 / 4 ) .

Funder

Deutsche Forschungsgemeinschaft

Narodowe Centrum Nauki

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference38 articles.

1. Examples of Feigenbaum Julia sets with small Hausdorff dimension;Avila,2006

2. Hausdorff dimension and conformal measures of Feigenbaum Julia sets;Avila;J. Am. Math. Soc.,2008

3. Lebesgue measure of Feigenbaum Julia sets;Avila;Ann. Math.,2022

4. Quadratic Julia sets with positive area;Buff;Ann. Math.,2012

5. Hausdorff dimension of quasicircles;Bowen;Inst. Hautes Études Sci. Publ. Math.,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3