Abstract
Abstract
This paper investigates Cauchy problems of nonlinear parabolic equation with a Caputo fractional derivative. When the initial datum is sufficiently small in some appropriate spaces, we demonstrate the existence in global time and uniqueness of a mild solution in fractional Sobolev spaces using some novel techniques. Under some suitable assumptions on the initial datum, we show that the mild solution of the time fractional parabolic equation converges to the mild solution of the classical problem when
α
→
1
−
. Under some appropriate assumptions on the initial datum, we show that the mild solution of the time fractional diffusion equation converges to the mild solution of the classical problem when
α
→
1
−
. Our theoretical results can be widely applied to many different equations such as the Hamilton–Jacobi equation, the Navier–Stokes equation in two cases: the fractional derivative and the classical derivative. Our paper also provides a completely new answer to the related open problem of convergence of solutions to fractional diffusion equations as the order of fractional derivative approaches 1−.
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献