Higgs fields, non-abelian Cauchy kernels and the Goldman symplectic structure

Author:

Bertola MORCID,Norton C,Ruzza GORCID

Abstract

Abstract We consider the moduli space of vector bundles of rank n and degree ng over a fixed Riemann surface of genus g 2 with the explicit parametrization in terms of the Tyurin data. The ‘non-abelian’ theta divisor consists of bundles such that h 1 1 . On the complement of this divisor we construct a non-abelian (i.e. matrix) Cauchy kernel explicitly in terms of the Tyurin data. With the additional datum of a non-special divisor, we can construct a reference flat holomorphic connection which also depends holomorphically on the moduli of the bundle. This allows us to identify the bundle of Higgs fields, i.e. the cotangent bundle of the moduli space, with the affine bundle of holomorphic connections and provide a monodromy map into the G L n character variety. We show that the Goldman symplectic structure on the character variety pulls back along this map to the complex canonical symplectic structure on the cotangent bundle and hence also on the space of connections. The pull-back of the Liouville one-form to the affine bundle of connections is then shown to be a logarithmic form with poles along the non-abelian theta divisor and residue given by h 1.

Funder

Fundação para a Ciência e a Tecnologia

Fonds De La Recherche Scientifique - FNRS

National Science Foundation

H2020 Marie Skłodowska-Curie Actions

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3