The bifurcation set as a topological invariant for one-dimensional dynamics

Author:

Fuhrmann Gabriel,Gröger Maik,Passeggi Alejandro

Abstract

Abstract For a continuous map on the unit interval or circle, we define the bifurcation set to be the collection of those interval holes whose surviving set is sensitive to arbitrarily small changes of (some of) their endpoints. By assuming a global perspective and focusing on the geometric and topological properties of this collection rather than the surviving sets of individual holes, we obtain a novel topological invariant for one-dimensional dynamics. We provide a detailed description of this invariant in the realm of transitive maps and observe that it carries fundamental dynamical information. In particular, for transitive non-minimal piecewise monotone maps, the bifurcation set encodes the topological entropy and strongly depends on the behavior of the critical points.

Funder

Comisión Sectorial de Investigación Científica

Deutsche Forschungsgemeinschaft

H2020 Marie Skłodowska-Curie Actions

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference37 articles.

1. The k-transformation on an interval with a hole;Agarwal;Qual. Theory Dyn. Syst.,2020

2. Semiconjugacy to a map of a constant slope;Alsedà;Discrete Contin. Dyn. Syst. B,2015

3. Leaking chaotic systems;Altmann;Rev. Mod. Phys.,2013

4. Continuous maps of the circle without periodic points;Auslander;Isr. J. Math.,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3