Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: two-scale expansions and symmetrisations

Author:

Mazari Idriss,Nadin Grégoire,Toledo Marrero Ana Isis

Abstract

Abstract In this article, we propose in-depth analysis and characterisation of the optimisers of the following optimisation problem: how to choose the initial condition u 0 in order to maximise the spatial integral at a given time of the solution of the semilinear equation u t −Δu = f(u), under L and L 1 constraints on u 0? Our contribution in the present paper is to give a characterisation of the behaviour of the optimiser u ¯ 0 when it does not saturate the L constraints, which is a key step in implementing efficient numerical algorithms. We give such a characterisation under mild regularity assumptions by proving that in that case u ¯ 0 can only take values in the ‘zone of concavity’ of f. This is done using two-scale asymptotic expansions. We then show how well-known isoperimetric inequalities yield a full characterisation of maximisers when f is convex. Finally, we provide several numerical simulations in one and two dimensions that illustrate and exemplify the fact that such characterisations significantly improve the computational time. All our theoretical results are in the one-dimensional case and we offer several comments about possible generalisations to other contexts, or obstructions that may prohibit doing so.

Funder

Agence Nationale de la Recherche

Austrian Science Fund

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference42 articles.

1. Homogenization and two-scale convergence;Allaire;SIAM J. Math. Anal.,1992

2. Multiscale convergence and reiterated homogenisation;Allaire;Proc. R. Soc. Edinburgh A,1996

3. Optimal releases for population replacement strategies: application to Wolbachia;Almeida;SIAM J. Math. Anal.,2019

4. A talenti comparison result for solutions to elliptic problems with Robin boundary conditions;Alvino;Analysis of PDEs,2019

5. Comparison results for elliptic and parabolic equations via Schwarz symmetrization;Alvino;Ann. Inst. Henri Poincare C,1990

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3