Author:
Ertzbischoff Lucas,Han-Kwan Daniel,Moussa Ayman
Abstract
Abstract
We study the large time behaviour of small data solutions to the Vlasov–Navier–Stokes system set on
Ω
×
R
3
, for a smooth bounded domain Ω of
R
3
, with homogeneous Dirichlet boundary condition for the fluid and absorption boundary condition for the kinetic phase. We prove that the fluid velocity homogenizes to 0 while the distribution function concentrates towards a Dirac mass in velocity centred at 0, with an exponential rate. The proof, which follows the methods introduced in Han-Kwan et al (2020 Arch. Ration. Mech. Anal.
236 1273–323), requires a careful analysis of the boundary effects. We also exhibit examples of classes of initial data leading to a variety of asymptotic behaviours for the kinetic density, from total absorption to no absorption at all.
Funder
Agence Nationale de la Recherche
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献