Author:
Li Yang,Sun Yongzhong,Zatorska Ewelina
Abstract
Abstract
In this paper, we consider a compressible two-fluid system with a common velocity field and algebraic pressure closure in dimension one. Existence, uniqueness and stability of global weak solutions to this system are obtained with arbitrarily large initial data. Making use of the uniform-in-time bounds for the densities from above and below, exponential decay of weak solution to the unique steady state is obtained without any smallness restriction to the size of the initial data. In particular, our results show that degeneration to single-fluid motion will not occur as long as in the initial distribution both components are present at every point.
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献