Thermodynamic formalism for transient dynamics on the real line

Author:

Gröger MORCID,Jaerisch JORCID,Kesseböhmer MORCID

Abstract

Abstract We develop a new thermodynamic formalism to investigate the transient behaviour of maps on the real line which are skew-periodic Z -extensions of expanding interval maps. Our main focus lies in the dimensional analysis of the recurrent and transient sets as well as in determining the full dimension spectrum with respect to α-escaping sets. Our results provide a one-dimensional model for the phenomenon of a dimension gap occurring for limit sets of Kleinian groups. In particular, we show that a dimension gap occurs if and only if we have non-zero drift and we are able to precisely quantify its width as an application of our new formalism.

Funder

Japan Society for The Promotion of Science

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference52 articles.

1. Recurrence of co-cycles and random walks;Atkinson;J. London Math. Soc.,1976

2. Hausdorff dimension and conformal measures of Feigenbaum Julia sets;Avila;J. Am. Math. Soc.,2008

3. Variational principles and mixed multifractal spectra;Barreira;Trans. Am. Math. Soc.,2001

4. Hausdorff dimension and Kleinian groups;Bishop;Acta Math.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3