Invariant measures for a stochastic nonlinear and damped 2D Schrödinger equation

Author:

Brzeźniak ZdzisławORCID,Ferrario Benedetta,Zanella Margherita

Abstract

Abstract We consider a stochastic nonlinear defocusing Schrödinger equation with zero-order linear damping, where the stochastic forcing term is given by a combination of a linear multiplicative noise in the Stratonovich form and a nonlinear noise in the Itô form. We work at the same time on compact Riemannian manifolds without boundary and on relatively compact smooth domains with either the Dirichlet or the Neumann boundary conditions, always in dimension two. We construct a martingale solution using a modified Faedo–Galerkin’s method, following Brzeźniak et al (2019 Probab. Theory Relat. Fields 174 1273–338). Then by means of the Strichartz estimates deduced from Blair et al (2008 Proc. Am. Math. Soc. 136 247–56) but modified for our stochastic setting we show the pathwise uniqueness of solutions. Finally, we prove the existence of an invariant measure by means of a version of the Krylov–Bogoliubov method, which involves the weak topology, as proposed by Maslowski and Seidler (1999 Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10 69–78). This is the first result of this type for stochastic nonlinear Schrödinger equation (NLS) on compact Riemannian manifolds without boundary and on relatively compact smooth domains even for an additive noise. Some remarks on the uniqueness in a particular case are provided as well.

Funder

Istituto Nazionale di Alta Matematica \"Francesco Severi\"

GNAMPA-INdAM

Hausdorff Institute for Mathematics in Bonn

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference71 articles.

1. Stochastic nonlinear Schrödinger equations with linear multiplicative noise: rescaling approach;Barbu;J. Nonlinear Sci.,2014

2. Stochastic nonlinear Schrödinger equations;Barbu;Nonlinear Anal. Theory Methods Appl.,2016

3. Stochastic nonlinear Schrödinger equations: no blow-up in the non-conservative case;Barbu;J. Differ. Equ.,2017

4. Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator;Bernicot;Ann. Scuola Norm. Super. Pisa,2017

5. Invariant measures for stochastic damped 2D Euler equations;Bessaih;Commun. Math. Phys.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3