Complex oscillatory motion of multiple spikes in a three-component Schnakenberg system

Author:

Xie ShuangquanORCID,Kolokolnikov Theodore,Nishiura Yasumasa

Abstract

Abstract In this paper, we introduce a three-component Schnakenberg model, whose key feature is that it has a solution consisting of N spikes that undergoes Hopf bifurcations with respect to N distinct modes nearly simultaneously. This results in complex oscillatory dynamics of the spikes, not seen in typical two-component models. For parameter values beyond the Hopf bifurcations, we derive reduced equations of motion which consist of coupled ordinary differential equations (ODEs) of dimension 2N for spike positions and their velocities. These ODEs fully describe the slow-time evolution of the spikes near the Hopf bifurcations. We then apply the method of multiple scales to the resulting ODEs to derive the long-time dynamics. For a single spike, we find that its long-time motion consists of oscillations near the steady state whose amplitude can be computed explicitly. For two spikes, the long-time behavior can be either in-phase or out-of-phase oscillations. Both in-phase and out-of-phase oscillations are stable, coexist for the same parameter values, and the fate of motion depends solely on the initial conditions. Further away from the Hopf bifurcation points, we offer numerical experiments indicating the existence of highly complex oscillations.

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3