Electron spin coherence on a solid neon surface

Author:

Chen QianfanORCID,Martin Ivar,Jiang Liang,Jin DafeiORCID

Abstract

Abstract A single electron floating on the surface of a condensed noble-gas liquid or solid can act as a spin qubit with ultralong coherence time, thanks to the extraordinary purity of such systems. Previous studies suggest that the electron spin coherence time on a superfluid helium (He) surface can exceed 100 s. In this paper, we present theoretical studies of the electron spin coherence on a solid neon (Ne) surface, motivated by our recent experimental realization of single-electron charge qubit on solid Ne. The major spin decoherence mechanisms investigated include the fluctuating Ne diamagnetic susceptibility due to thermal phonons, the fluctuating thermal current in normal metal electrodes, and the quasi-statically fluctuating nuclear spins of the 21Ne ensemble. We find that at a typical experimental temperature about 10 mK in a fully superconducting device, the electron spin decoherence is dominated by the third mechanism via electron–nuclear spin–spin interaction. For natural Ne with 2700 ppm abundance of 21Ne, the estimated inhomogeneous dephasing time T 2 * is around 0.16 ms, already better than most semiconductor quantum-dot spin qubits. For commercially available, isotopically purified Ne with 1 ppm of 21Ne, T 2 * can be 0.43 s. Under the application of Hahn echoes, the coherence time T 2 can be improved to 30 ms for natural Ne and 81 s for purified Ne. Therefore, the single-electron spin qubits on solid Ne can serve as promising new spin qubits.

Funder

Basic Energy Sciences

Argonne National Laboratory

Julian Schwinger Foundation for Physics Research

David and Lucile Packard Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3