Entangling mechanical vibrations of two massive ferrimagnets by fully exploiting the nonlinearity of magnetostriction

Author:

Qian Hang,Fan Zhi-Yuan,Li JieORCID

Abstract

Abstract Quantum entanglement in the motion of macroscopic objects is of significance to both fundamental studies and quantum technologies. Here we show how to entangle the mechanical vibration modes of two massive ferrimagnets that are placed in the same microwave cavity. Each ferrimagnet supports a magnon mode and a low-frequency vibration mode coupled by the magnetostrictive force. The two magnon modes are, respectively, coupled to the microwave cavity by the magnetic dipole interaction. We first generate a stationary nonlocal entangled state between the vibration mode of the ferrimagnet-1 and the magnon mode of the ferrimagnet-2. This is realized by continuously driving the ferrimagnet-1 with a strong red-detuned microwave field and the entanglement is achieved by exploiting the magnomechanical parametric down-conversion and the cavity–magnon state-swap interaction. We then switch off the pump on the ferrimagnet-1 and, simultaneously, turn on a red-detuned pulsed drive on the ferrimagnet-2. The latter drive is used to activate the magnomechanical beamsplitter interaction, which swaps the magnonic and mechanical states of the ferrimagnet-2. Consequently, the previously generated phonon–magnon entanglement is transferred to the mechanical modes of two ferrimagnets. The work provides a scheme to prepare entangled states of mechanical motion of two massive objects, which may find applications in various studies exploiting macroscopic entangled states.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3