Noiseless linear amplification in quantum target detection using Gaussian states

Author:

Karsa AthenaORCID,Ghalaii MasoudORCID,Pirandola StefanoORCID

Abstract

Abstract Quantum target detection aims to utilise quantum technologies to achieve performances in target detection not possible through purely classical means. Quantum illumination is an example of this, based on signal–idler entanglement, promising a potential 6 dB advantage in error exponent over its optimal classical counterpart. So far, receiver designs achieving this optimal reception remain elusive with many proposals based on Gaussian processes appearing unable to utilise quantum information contained within Gaussian state sources. This paper considers the employment of a noiseless linear amplifier at the detection stage of a quantum illumination-based quantum target detection protocol. Such a non-Gaussian amplifier offers a means of probabilistically amplifying an incoming signal without the addition of noise. Considering symmetric hypothesis testing, the quantum Chernoff bound is derived and limits on detection error probability is analysed for both the two-mode squeezed vacuum state and the coherent state classical benchmark. Our findings show that in such a scheme the potential quantum advantage is amplified even in regimes where quantum illumination alone offers no advantage, thereby extending its potential use. The same cannot be said for coherent states, whose performances are generally bounded by that without amplification.

Funder

Horizon 2020 Framework Programme

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Reference55 articles.

1. Quantum computation;DiVincenzo;Science,1995

2. A one-way quantum computer;Raussendorf;Phys. Rev. Lett.,2001

3. Measurement-based quantum computation;Briegel;Nat. Phys.,2009

4. Quantum communication;Gisin;Nat. Photon.,2007

5. Quantum secret sharing;Hillery;Phys. Rev. A,1999

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3