Comagnetometer probes of dark matter and new physics

Author:

Terrano W AORCID,Romalis M V

Abstract

Abstract Modern comagnetometry is—in absolute energy units—the most sensitive experimental technique for measuring the energy splitting between quantum states, with certain implementations measuring the nuclear spin-up/spin-down splitting at the 10−26 eV level. By measuring and subtracting the leading magnetic effects on the spins, comagnetometry can be used to study non-standard-model spin interactions. New physics scenarios that comagnetometers can probe include EDMs, violations of Lorentz invariance, Goldstone bosons from new high-energy symmetries, spin-dependent and CP-violating long-range forces, and axionic dark matter. We describe the many implementations that have been developed and optimized for these applications, and consider the prospects for improvements in the technique. Based purely on existing technology, there is room for several orders of magnitude in further improvement in statistical sensitivity. We also evaluate sources of systematic error and instability that may limit attainable improvements.

Funder

Simons Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3