Abstract
Abstract
A crucial milestone in the field of quantum simulation and computation is to demonstrate that a quantum device can perform a computation task that is classically intractable. A key question is to identify setups that can achieve such goal within current technologies. In this work, we provide formal evidence that sampling bit-strings from a periodic evolution of a unitary drawn from the circular orthogonal ensemble (COE) cannot be efficiently simulated with classical computers. As the statistical properties of COE coincide with a large class of driven analog quantum systems thanks to the Floquet eigenstate thermalization hypothesis, our results indicate the possibility that those driven systems could constitute practical candidates for a sampling quantum advantage. To further support this, we give numerical examples of driven disordered Ising chains and 1D driven Bose–Hubbard model.
Funder
National Natural Science Foundation of China
National Research Foundation, Prime Minister’s Office, Singapore and the Ministry of Education, Singapore under the Research Centres of Excellence programme
Polisimulator project co-financed by Greece and the EU Regional Development Fund
Subject
Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献