Noise dynamics of quantum annealers: estimating the effective noise using idle qubits

Author:

Pelofske ElijahORCID,Hahn Georg,Djidjev Hristo N

Abstract

Abstract Quantum annealing is a type of analog computation that aims to use quantum mechanical fluctuations in search of optimal solutions of QUBO (quadratic unconstrained binary optimization) or, equivalently, Ising problems. Since NP-hard problems can in general be mapped to Ising and QUBO formulations, the quantum annealing paradigm has the potential to help solve various NP-hard problems. Current quantum annealers, such as those manufactured by D-Wave Systems, Inc. have various practical limitations including the size (number of qubits) of the problem that can be solved, the qubit connectivity, and error due to the environment or system calibration, which can reduce the quality of the solutions. Typically, for an arbitrary problem instance, the corresponding QUBO (or Ising) structure will not natively embed onto the available qubit architecture on the quantum chip. Thus, in these cases, a minor embedding of the problem structure onto the device is necessary. However, minor embeddings on these devices do not always make use of the full sparse chip hardware graph, and a large portion of the available qubits stay unused during quantum annealing. In this work, we embed a disjoint random QUBO on the unused parts of the chip alongside the QUBO to be solved, which acts as an indicator of the solution quality of the device over time. Using experiments on three different D-Wave quantum annealers, we demonstrate that (i) long term trends in solution quality exist on the D-Wave device, and (ii) the unused qubits can be used to measure the current level of noise of the quantum system.

Funder

Bulgarian National Science Fund

Science and Education for Smart Growth Operational Program

Laboratory Directed Research and Development program of Los Alamos National Laboratory

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing quantum annealing accuracy through replication-based error mitigation*;Quantum Science and Technology;2024-09-02

2. Replication-Based Quantum Annealing Error Mitigation;Proceedings of the 21st ACM International Conference on Computing Frontiers;2024-05-07

3. Analysis of a Programmable Quantum Annealer as a Random Number Generator;IEEE Transactions on Information Forensics and Security;2024

4. A Methodology for Comparing and Benchmarking Quantum Devices;Lecture Notes in Computer Science;2024

5. Probing Quantum Telecloning on Superconducting Quantum Processors;IEEE Transactions on Quantum Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3