Approximate decoherence free subspaces for distributed sensing

Author:

Hamann ArneORCID,Sekatski PavelORCID,Dür WolfgangORCID

Abstract

Abstract We consider the sensing of scalar valued fields with specific spatial dependence using a network of sensors, e.g. multiple atoms located at different positions within a trap. We show how to harness the spatial correlations to sense only a specific signal, and be insensitive to others at different positions or with unequal spatial dependence by constructing a decoherence-free subspace for noise sources at fixed, known positions. This can be extended to noise sources lying on certain surfaces, where we encounter a connection to mirror charges and equipotential surfaces in classical electrostatics. For general situations, we introduce the notion of an approximate decoherence-free subspace, where noise for all sources within some volume is significantly suppressed, at the cost of reducing the signal strength in a controlled way. We show that one can use this approach to maintain Heisenberg-scaling over long times and for a large number of sensors, despite the presence of multiple noise sources in large volumes. We introduce an efficient formalism to construct internal states and sensor configurations, and apply it to several examples to demonstrate the usefulness and wide applicability of our approach.

Funder

Austrian Science Fund

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3