Methods for measuring the electron’s electric dipole moment using ultracold YbF molecules

Author:

Fitch N JORCID,Lim JORCID,Hinds E A,Sauer B EORCID,Tarbutt M RORCID

Abstract

Abstract Measurements of the electron’s electric dipole moment (eEDM) are demanding tests of physics beyond the standard model. We describe how ultracold YbF molecules could be used to improve the precision of eEDM measurements by two to three orders of magnitude. Using numerical simulations, we show how the combination of magnetic focussing, two-dimensional transverse laser cooling, and frequency-chirped laser slowing, can produce an intense, slow, highly-collimated molecular beam. We show how to make a magneto-optical trap of YbF molecules and how the molecules could be loaded into an optical lattice. eEDM measurements could be made using the slow molecular beam or using molecules trapped in the lattice. We estimate the statistical sensitivity that could be reached in each case and consider how sources of noise can be reduced so that the shot-noise limit of sensitivity can be reached. We also consider systematic effects due to magnetic fields and vector light shifts and how they could be controlled.

Funder

Royal Society

Science and Technology Facilities Council

John Templeton Foundation

Alfred P. Sloan Foundation

Gordon and Betty Moore Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3