PhotoniQLAB: a framework for simulating photonic quantum information processing experiments

Author:

Wu Zhihao,Wu JunjieORCID,Huang Anqi

Abstract

Abstract Simulators for photonic quantum information processing (PQIP) experiments are essentially different with currently available quantum-circuit simulators. In PQIP experiments, photons are usually encoded by multiple degrees of freedom, some of which are multi-level or even infinite-level. Moreover, the evolution of indistinguishable photons cannot be described elegantly by the model used in quantum-circuit simulators. A simulator focusing on PQIP experiments is urgently needed, as it plays an important role in PQIP experiments designing and verification. We developed PhotoniQLAB, an object-oriented framework designed for simulating PQIP experiments, which provides a virtual-lab user experience. The core simulation unit is a computer algebraic system based on the second quantization method. PhotoniQLAB only requires users to enter the structure information of a target PQIP experiment to conduct a simulation, as it can understand the topological structure by itself. The mathematical foundation and technical details of PhotoniQLAB are discussed in the paper. The performance of PhotoniQLAB, which is analyzed and used to simulate several experimental schemes in this paper, has been shown to be efficient enough for near-term PQIP experiments. PhotoniQLAB shows its flexibility and universality, through simulating more than 60 existing PQIP experiments in published papers. We believe that PhotoniQLAB will become a fundamental PQIP software infrastructure facilitating the analyses and designs of PQIP experiments.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Reference92 articles.

1. Bounds for the quantity of information transmitted by a quantum communication channel;Holevo;Probl. Pereda. Inf.,1973

2. Quantum information theory;Ingarden;Rep. Math. Phys.,1976

3. Simulating physics with computers;Feynman;Int. J. Theor. Phys.,1982

4. Conjugate coding;Wiesner;SIGACT News,1983

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3