Abstract
Abstract
Ensemble-based quantum memories are key to developing multiplexed quantum repeaters, able to overcome the intrinsic rate limitation imposed by finite communication times over long distances. Rare-earth ion doped crystals are main candidates for highly multimode quantum memories, where time, frequency and spatial multiplexing can be exploited to store multiple modes. In this context the atomic frequency comb (AFC) quantum memory provides large temporal multimode capacity, which can readily be combined with multiplexing in frequency and space. In this article, we derive theoretical formulas for quantifying the temporal multimode capacity of AFC-based memories, for both optical memories with fixed storage time and spin-wave memories with longer storage times and on-demand read out. The temporal multimode capacity is expressed in key memory parameters, such as AFC bandwidth, fixed-delay storage time, memory efficiency, and control field Rabi frequency. Current experiments in europium- and praseodymium-doped Y2SiO5 are analyzed within this theoretical framework, which is also tested with newly acquired data, as prospects for higher temporal capacity in these materials are considered. In addition we consider the possibility of spectral and spatial multiplexing to further increase the mode capacity, with examples given for praseodymium doped Y2SiO5.
Funder
Governement of Spain
Fundación Cellex
FUNDACIÓ Privada MIR-PUIG
Generalitat de Catalunya
SNSF NCCR QSIT
H2020 European Institute of Innovation and Technology
H2020 Marie Skłodowska-Curie Actions
Gordon and Betty Moore Foundation
Subject
Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献