Abstract
Abstract
In superconducting quantum circuits (SQCs), chiral routing quantum information is often realized with the ferrite circulators, which are usually bulky, lossy and require strong magnetic fields. To overcome those problems, we propose a novel method to realize chiral quantum networks by exploiting giant atom effects in SQC platforms. By assuming each coupling point being modulated with time, the interaction becomes momentum-dependent, and giant atoms will chirally emit photons due to interference effects. The chiral factor can approach 1, and both the emission direction and rate can be freely tuned by the modulating signals. We demonstrate that a high-fidelity state transfer between remote giant atoms can be realized. Our proposal can be integrated on the superconducting chip easily, and has the potential to work as a tunable toolbox for quantum information processing in future chiral quantum networks.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献