Improving readout in quantum simulations with repetition codes

Author:

Günther Jakob MORCID,Tacchino FrancescoORCID,Wootton James RORCID,Tavernelli IvanoORCID,Barkoutsos Panagiotis KlORCID

Abstract

Abstract Near term quantum computers suffer from the presence of different noise sources. In order to mitigate for this effect and acquire results with significantly better accuracy, there is the urge of designing efficient error correction or error mitigation schemes. The cost of such techniques is usually high in terms of resource requirements, either in hardware or at the algorithmic level. In this work, we follow a pragmatic approach and we use repetition codes as scalable schemes with the potential to provide more accurate solutions to problems of interest in quantum chemistry and physics. We investigate different repetition code layouts and we propose a circular repetition scheme with connectivity requirements that are native on IBM Quantum hardware. We showcase our approach in multiple IBM Quantum devices and validate our results using a simplified theoretical noise model. We highlight the effect of using the proposed scheme in an electronic structure variational quantum eigensolver calculation and in the simulation of time evolution for a quantum Ising model.

Funder

Swiss National Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Virtual quantum error detection;Physical Review A;2023-10-25

2. Single-shot error mitigation by coherent Pauli checks;Physical Review Research;2023-09-18

3. Existence of Pauli-like stabilizers for every quantum error-correcting code;Physical Review A;2023-09-15

4. Measurement-induced quantum walks on an IBM quantum computer;Physical Review Research;2023-08-08

5. A Bird's Eye View on Quantum Computing: Current and Future Trends;IEEE EUROCON 2023 - 20th International Conference on Smart Technologies;2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3