Abstract
Abstract
Most security proofs of quantum key distribution (QKD) disregard the effect of information leakage from the users’ devices, and, thus, do not protect against Trojan-horse attacks (THAs). In a THA, the eavesdropper injects strong light into the QKD apparatuses, and then analyzes the back-reflected light to learn information about their internal setting choices. Only a few recent works consider this security threat, but predict a rather poor performance of QKD unless the devices are strongly isolated from the channel. Here, we derive finite-key security bounds for decoy-state-based QKD schemes in the presence of THAs, which significantly outperform previous analyses. Our results constitute an important step forward to closing the existing gap between theory and practice in QKD.
Funder
Ministerio de Ciencia e Innovación
Galician Regional Government
Ministerio de Economía y Competitividad
European Regional Development Fund
Subject
Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献