Abstract
Abstract
The thermodynamic properties of quantum heat engines are stochastic owing to the presence of thermal and quantum fluctuations. We here experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle in a nuclear magnetic resonance setup. We first study the correlations between work and heat within a cycle by extracting their joint distribution for different driving times. We show that near perfect correlation, corresponding to the tight-coupling condition between work and heat, can be achieved. In this limit, the reconstructed efficiency distribution is peaked at the deterministic thermodynamic efficiency, and fluctuations are strongly suppressed. We further successfully test the second law in the form of a joint fluctuation relation for work and heat in the quantum cycle. Our results characterize the statistical features of a small-scale thermal machine in the quantum domain, and provide means to control them.
Funder
German Science Foundation
National Institute for Science and Technology of Quantum Information
the Federal University of ABC (UFABC), the Brazilian National Council for Scientific and Technological Development
the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), the São Paulo Research Foundation
INCT-IQ