Abstract
Abstract
Quantum simulations provide means to probe challenging problems within controllable quantum systems. However, implementing or simulating deep-strong nonlinear couplings between bosonic oscillators on physical platforms remains a challenge. We present a deterministic simulation technique that efficiently and accurately models nonlinear bosonic dynamics. This technique alternates between tunable Rabi and SNAP gates, both of which are available on experimental platforms such as trapped ions and superconducting circuits. Our proposed simulation method facilitates high-fidelity modeling of phenomena that emerge from higher-order bosonic interactions, with an exponential reduction in resource usage compared to other techniques. We demonstrate the potential of our technique by accurately reproducing key phenomena and other distinctive characteristics of ideal nonlinear optomechanical systems. Our technique serves as a valuable tool for simulating complex quantum interactions, simultaneously paving the way for new capabilities in quantum computing through the use of hybrid qubit-oscillator systems.
Funder
Grantová Agentura České Republiky
EU H2020
European Union’s HORIZON Re- search and Innovation Actions
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献