Experimentally optimizing QKD rates via nonlocal dispersion compensation

Author:

Neumann Sebastian PhilippORCID,Ribezzo Domenico,Bohmann MartinORCID,Ursin RupertORCID

Abstract

Abstract Quantum key distribution (QKD) enables unconditionally secure communication guaranteed by the laws of physics. The last decades have seen tremendous efforts in making this technology feasible under real-life conditions, with implementations bridging ever longer distances and creating ever higher secure key rates. Readily deployed glass fiber connections are a natural choice for distributing the single photons necessary for QKD both in intra- and intercity links. Any fiber-based implementation however experiences chromatic dispersion which deteriorates temporal detection precision. This ultimately limits maximum distance and achievable key rate of such QKD systems. In this work, we address this limitation to both maximum distance and key rate and present an effective and easy-to-implement method to overcome chromatic dispersion effects. By exploiting entangled photons’ frequency correlations, we make use of nonlocal dispersion compensation to improve the photons’ temporal correlations. Our experiment is the first implementation utilizing the inherently quantum-mechanical effect of nonlocal dispersion compensation for QKD in this way. We experimentally show an increase in key rate from 6.1 to 228.3 bits/s over 6.46 km of telecom fiber. Our approach is extendable to arbitrary fiber lengths and dispersion values, resulting in substantially increased key rates and even enabling QKD in the first place where strong dispersion would otherwise frustrate key extraction at all.

Funder

Austrian Academy of Sciences

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Reference41 articles.

1. Quantum cryptography: public key distribution and coin tossing;Bennett,1984

2. Secure quantum key distribution with realistic devices;Xu;Rev. Mod. Phys.,2020

3. Entanglement-based secure quantum cryptography over 1,120 kilometres;Yin;Nature,2020

4. A trusted-node-free eight-user metropolitan quantum communication network;Joshi,2019

5. Cambridge quantum network;Dynes;npj Quantum Inf.,2019

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3