Qade: solving differential equations on quantum annealers

Author:

Criado Juan CarlosORCID,Spannowsky Michael

Abstract

Abstract We present a general method, called Qade, for solving differential equations using a quantum annealer. One of the main advantages of this method is its flexibility and reliability. On current devices, Qade can solve systems of coupled partial differential equations that depend linearly on the solution and its derivatives, with non-linear variable coefficients and arbitrary inhomogeneous terms. We test this through several examples that we implement in state-of-the-art quantum annealers. The examples include a partial differential equation and a system of coupled equations. This is the first time that equations of these types have been solved in such devices. We find that the solution can be obtained accurately for problems requiring a small enough function basis. We provide a Python package implementing the method at gitlab.com/jccriado/qade.

Funder

Science and Technology Facilities Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Reference51 articles.

1. Neural algorithm for solving differential equations;Lee;J. Comput. Phys.,1990

2. The numerical solution of linear ordinary differential equations by feedforward neural networks;Meade;Math. Comput. Modelling,1994

3. Solution of nonlinear ordinary differential equations by feedforward neural networks;Meade;Math. Comput. Modelling,1994

4. Artificial neural networks for solving ordinary and partial differential equations;Lagaris,1997

5. Physics informed deep learning (part i): data-driven solutions of nonlinear partial differential equations;Raissi,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3