Quantum-feedback-controlled macroscopic quantum nonlocality in cavity optomechanics

Author:

Luo Yaqin,Tan HuatangORCID

Abstract

Abstract In this paper, we propose a continuous measurement and feedback scheme to achieve strong Einstein–Podolsky–Rosen (EPR) steering and Bell nonlocality of two macroscopic mechanical oscillators in cavity optomechanics. Our system consists of two optomechanical cavities in which two cavity fields are coupled to each other via nondegenerate parametric downconversion. The two cavity output fields are subject to continuous Bell-like homodyne detection and the detection currents are fed back to drive the cavity fields. It is found that when the feedback is absent, the two mechanical oscillators can only be prepared in steady weakly entangled states which however do not display EPR steering and Bell nonlocality, due to the so-called 3 dB limit. But when the feedback is present, it is found that the mechanical entanglement is considerably enhanced such that strong mechanical steering and Bell nonlocality can be obtained in the steady-state regime. We analytically reveal that this is because the feedback drives the mechanical oscillators into a steady approximate two-mode squeezed vacuum state, with arbitrary squeezing in principle. It is shown that the feedback can also obviously improve the purity of the nonclassical mechanical states. The dependences of the mechanical quantum nonlocality on the feedback strength and thermal fluctuations are studied, and it is found that Bell nonlocality is much more vulnerable to thermal noise than EPR steerable nonlocality.

Funder

The National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3