Abstract
Abstract
The quantum angle generator (QAG) is a new full quantum machine learning model designed to generate accurate images on current noise intermediate scale quantum devices. Variational quantum circuits form the core of the QAG model, and various circuit architectures are evaluated. In combination with the so-called MERA-upsampling architecture, the QAG model achieves excellent results, which are analyzed and evaluated in detail. To our knowledge, this is the first time that a quantum model has achieved such accurate results. To explore the robustness of the model to noise, an extensive quantum noise study is performed. In this paper, it is demonstrated that the model trained on a physical quantum device learns the noise characteristics of the hardware and generates outstanding results. It is verified that even a quantum hardware machine calibration change during training of up to 8% can be well tolerated. For demonstration, the model is employed in indispensable simulations in high energy physics required to measure particle energies and, ultimately, to discover unknown particles at the large Hadron Collider at CERN.
Funder
Wolfgang Gentner Programme of the German Federal Ministry of Education and Research
IBM Quantum Hub at CERN
CERN Quantum Technology Initiative
Deutsches Elektronen-Synchrotron DESY
Helmholz Association
Subject
Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献