Power system investment optimization to identify carbon neutrality scenarios for Italy

Author:

Di Bella AliceORCID,Canti Federico,Prina Matteo GiacomoORCID,Casalicchio ValeriaORCID,Manzolini GiampaoloORCID,Sparber WolframORCID

Abstract

Abstract In 2021 the European Commission has proposed the Fit-for-55 policy package, requiring European countries to reduce their CO2 emissions by 55% with respect to 1990 by the year 2030, a first step to achieve carbon neutrality by 2050. Energy system modeling can be a valuable tool for national policymakers to choose the most appropriate technologies to achieve these goals efficiently. This article presents a model of the Italian power system realized employing the open energy modeling framework, Oemof. A linear programming optimization is implemented to evaluate how to minimize system costs at decreasing CO2 emissions in 2030. The developed tool is applied to evaluate different research questions: (i) pathway towards full decarbonization and power self-sufficiency of the electricity sector in Italy, (ii) relevance of flexibility assets in power grids: li-ion batteries, hydrogen storage and transmission lines reinforcement. A 55% CO2 emissions reduction for the actual Italian power sector can be achieved through an increase of 30% of the total annual system cost. Achieving complete decarbonization and self-sufficiency increases significatively annual expenditures. However, cost mitigation is plausible through the integration of sector coupling methodologies or the adoption of a broader spectrum of technological solutions. Flexibility measures appear instrumental for decarbonization, particularly transmission lines, demanding a substantial expansion beyond the stated plans for 2030. This infrastructure is crucial in Italy to facilitate the transfer of renewable electricity generated in the Southern regions to the Northern areas, where a large portion of the electricity demand is located.

Publisher

IOP Publishing

Reference83 articles.

1. Sixth assessment report;IPCC,n.d.

2. Emissions gap report 2020. UNEP—UN environ programme 2020;Environment UN

3. Key aspects of the Paris Agreement;UNFCCC,n.d.

4. CO2 and greenhouse gas emissions;Ritchie,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3