The potential role of airborne and floating wind in the North Sea region

Author:

Vos Hidde,Lombardi FrancescoORCID,Joshi Rishikesh,Schmehl RolandORCID,Pfenninger StefanORCID

Abstract

Abstract Novel wind technologies, in particular airborne wind energy (AWE) and floating offshore wind turbines, have the potential to unlock untapped wind resources and contribute to power system stability in unique ways. So far, the techno-economic potential of both technologies has only been investigated at a small scale, whereas the most significant benefits will likely play out on a system scale. Given the urgency of the energy transition, the possible contribution of these novel technologies should be addressed. Therefore, we investigate the main system-level trade-offs in integrating AWE systems and floating wind turbines into a highly renewable future energy system. To do so, we develop a modelling workflow that integrates wind resource assessment and future cost and performance estimations into a large-scale energy system model, which finds cost-optimal system designs that are operationally feasible with hourly temporal resolution across ten countries in the North Sea region. Acknowledging the uncertainty on AWE systems’ future costs and performance and floating wind turbines, we examine a broad range of cost and technology development scenarios and identify which insights are consistent across different possible futures. We find that onshore AWE outperforms conventional onshore wind regarding system-wide benefits due to higher wind resource availability and distinctive hourly generation profiles, which are sometimes complementary to conventional onshore turbines. The achievable power density per ground surface area is the main limiting factor in large-scale onshore AWE deployment. Offshore AWE, in contrast, provides system benefits similar to those of offshore wind alternatives. Therefore, deployment is primarily driven by cost competitiveness. Floating wind turbines achieve higher performance than conventional wind turbines, so they can cost more and remain competitive. AWE, in particular, might be able to play a significant role in a climate-neutral European energy supply and thus warrants further study.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

HORIZON EUROPE Climate, Energy and Mobility

Publisher

IOP Publishing

Reference72 articles.

1. Mitigation of Climate Change Climate Change 2022 Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change;IPCC,2022

2. Airborne wind energy resource analysis;Bechtle;Renew. Energy,2019

3. Airborne Wind Energy systems;Airborne Wind Europe,2023

4. Crosswind kite power (for large-scale wind power production);Loyd;J. Energy,1980

5. Pumping cycle kite power;Luchsinger,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3