Flexible emulation of the climate warming cooling feedback to globally assess the maladaptation implications of future air conditioning use

Author:

Byers EdwardORCID,Meng MeasrainseyORCID,Mastrucci AlessioORCID,van Ruijven BasORCID,Krey VolkerORCID

Abstract

Abstract Rising affluence and a warming climate mean that the demand for air conditioning (AC) is rising rapidly, as society adapts to climate extremes. Here we present findings from a new methodological framework to flexibly couple and emulate these growing demands into a global integrated assessment model (IAM), subsequently representing the positive feedbacks between rising temperatures, growth in cooling demand, and carbon emissions. In assessing global and regional climate change impacts on cooling energy demand, the emulator incorporates climate model uncertainties and can explore behavioural and adaptation-related assumptions on setpoint temperature and access to cooling. It is also agnostic to the emissions and climate warming trajectory, enabling the IAM to run new policy-relevant scenarios (Current Policies, 2 °C and 1.5 °C) with climate impacts that do not follow Representative Concentration Pathways. We find that climate model uncertainty has a significant effect, more than doubling the increase in electricity demand, when comparing the 95th percentile cases to the median of the climate model ensemble. Residential AC cooling energy demands are expected to increase by 150% by 2050 whilst providing universal access to AC would result in the order of a 400% increase. Depending on the region, under current policies and limited mitigation, climate change could bring in the order of 10%–20% higher cooling-related electricity demands by 2050, and approximately 50% by 2100. Set point temperature has an important moderating role—increasing internal set-point from 23 °C to 26 °C, approximately halves the growth in electricity demand, for the majority of scenarios and regions. This effect is so strong that the change in set point temperature to both residential and commercial sectors outweighs the growth in demand that would occur by providing universal access to AC by 2050 to the 40% of the global population who would otherwise not afford it.

Funder

Research Institute of Innovative Technology for the Earth, Japan

Ministry of Economy, Trade and Industry (METI), Japan

Publisher

IOP Publishing

Reference59 articles.

1. The future of cooling: opportunities for energy-efficient air conditioning;IEA,2018

2. Country-level energy demand for cooling has increased over the past two decades;Scoccimarro;Commun. Earth Environ.,2023

3. Amplification of future energy demand growth due to climate change;van Ruijven;Nat. Commun.,2019

4. Future air conditioning energy consumption in developing countries and what can be done about it: the potential of efficiency in the residential sector;McNeil,2008

5. Improving the SDG energy poverty targets: residential cooling needs in the Global South;Mastrucci;Energy Build.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3