Abstract
Abstract
Studies of bulk power system operations need to incorporate uncertainty and sensitivity analyses, especially around exposure to weather and climate variability and extremes, but this remains a computational modeling challenge. Commercial production cost models (PCMs) have shorter runtimes, but also important limitations (opacity, license restrictions) that do not fully support stochastic simulation. Open-source PCMs represent a potential solution. They allow for multiple, simultaneous runs in high-performance computing environments and offer flexibility in model parameterization. Yet, developers must balance computational speed (i.e. runtime) with model fidelity (i.e. accuracy). In this paper, we present Grid Operations (GO), a framework for instantiating open-source, scale-adaptive PCMs. GO allows users to search across parameter spaces to identify model versions that appropriately balance computational speed and fidelity based on experimental needs and resource limits. Results provide generalizable insights on how to navigate the fidelity and computational speed tradeoff through parameter selection. We show that models with coarser network topologies can accurately mimic market operations, sometimes better than higher-resolution models. It is thus possible to conduct large simulation experiments that characterize operational risks related to climate and weather extremes while maintaining sufficient model accuracy.
Funder
This research was supported by the US Department of Energy, Office of Science, as part of research in the MultiSector Dynamics, Earth and Environmental System Modeling Program.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献