Interaction of energetic particles with large and small scale instabilities

Author:

Günter S.,Conway G.,daGraça S.,Fahrbach H.-U.,Forest C.,Garcia Muñoz M.,Hauff T.,Hobirk J.,Igochine V.,Jenko F.,Lackner K.,Lauber P.,McCarthy P.,Maraschek M.,Martin P.,Poli E.,Sassenberg K.,Strumberger E.,Tardini G.,Wolfrum E.,Zohm H.

Abstract

Beyond a certain heating power, measured and predicted distributions of neutral beam injection (NBI) driven currents deviate from each other even in the absence of MHD instabilities. The most reasonable explanation is a redistribution of fast NBI ions on a time scale smaller than the current redistribution time. The hypothesis of a redistribution of fast ions by background turbulence is discussed. Direct numerical simulation of fast test particles in a given field of electrostatic turbulence indicates that for reasonable parameters fast and thermal particle diffusion can indeed be similar. High quality plasma edge density profiles on ASDEX Upgrade and the recent extension of the reflectometry system allow for a direct comparison of observed TAE eigenfunctions with theoretical ones as obtained with the linear, gyrokinetic, global stability code LIGKA. These comparisons support the hypothesis of TAE-frequency crossing the continuum at the plasma edge in ASDEX Upgrade H-mode discharges. A new fast ion loss detector with 1 MHz time resolution allows frequency and phase resolved correlation between the observed losses and low frequency magnetic perturbations such as TAE modes and rotating magnetic islands. Whereas losses caused by TAE modes are known to be due to resonances in velocity space, by modelling the particle drift orbits we were able to explain losses caused by magnetic islands as due to island formation and stochasticity in the drift orbits.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference48 articles.

1. Off-axis neutral beam current drive experiments on ASDEX Upgrade and JT-60U

2. Conditions for NBI current profile control on ASDEX Upgrade

3. Current profile modification by off-axis NBI on ASDEX Upgrade

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3