Exact and approximate solutions to the finite temperature wave equation in a one-dimensional perpendicularly stratified plasma

Author:

Jaeger E.F.,Batchelor D.B.,Weitzner H.

Abstract

The sixth order wave equation which results from a finite temperature expansion of the Vlasov equation is solved globally in the ion cyclotron range of frequencies. A perpendicularly stratified, onedimensional slab plasma is assumed. The diamagnetic drift and the associated anisotropy are included in the unperturbed distribution function to ensure a self-adjoint system. All x-dependence in the plasma pressure and magnetic field is retained along with the electric field parallel to B⃗. Thus, Landau damping of the ion Bernstein wave is included self-consistently. Because of the global nature of the solution, the evanescent short wavelength Bernstein waves do not grow exponentially as in shooting methods. Strong variations occur in the absorption and in the structure of the wave fields as resonance topology is varied. Solutions to the complete sixth order differential equation are compared to those from an approximate second order equation based on local dispersion theory.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3