Abstract
Abstract
Tissue-engineered living machines is an emerging discipline that employs complex interactions between living cells and engineered scaffolds to self-assemble biohybrid systems for diverse scientific research and technological applications. Here, we report an adaptive, autonomous biohybrid pumping machine with flow loop feedback powered by engineered living muscles. The tissue is made from skeletal muscle cells (C2C12) and collagen I/Matrigel matrix, which self-assembles into a ring that compresses a soft hydrogel tube connected at both ends to a rigid fluidic platform. The muscle ring contracts in a repetitive fashion autonomously squeezing the tube, resulting in an impedance pump. The resulting flow is circulated back to the muscle ring forming a feedback loop, which allows the pump to respond to the cues received from the flow it generates and adaptively manage its pumping performances based on the feedback. The developed biohybrid pumping system may have broad utility and impact in health, medicine and bioengineering.
Funder
National Science Foundation
NSF
National Science Foundation (NSF), Science and Technology Center on Emergent Behaviors
Subject
Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献