Development of a plasma-based 3D printing system for enhancing the biocompatibility of 3D scaffold

Author:

Kim Seung Hyeon,Lee Jae SeoORCID,Lee Sang JinORCID,Nah HaramORCID,Min Sung JunORCID,Moon Ho JinORCID,Bang Jae Beum,Kim Han-JunORCID,Kim Won JongORCID,Kwon Il KeunORCID,Heo Dong NyoungORCID

Abstract

Abstract Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology typically used in tissue engineering. However, 3D-printed row scaffolds manufactured using material extrusion techniques have low cell affinity on the surface and an insufficient biocompatible environment for desirable tissue regeneration. Thus, in this study, plasma treatment was used to render surface modification for enhancing the biocompatibility of 3D-printed scaffolds. We designed a plasma-based 3D printing system with dual heads comprising a plasma device and a regular 3D FDM printer head for a layer-by-layer nitrogen plasma treatment. Accordingly, the wettability, roughness, and protein adsorption capability of the 3D-printed scaffold significantly increased with the plasma treatment time. Hence, the layer-by-layer plasma-treated (LBLT) scaffold exhibited significantly enhanced cell adhesion and proliferation in an in vitro assay. Furthermore, the LBLT scaffold demonstrated a higher tissue infiltration and lower collagen encapsulation than those demonstrated by a non-plasma-treated scaffold in an in vivo assay. Our approach has great potential for various tissue-engineering applications via the adjustment of gas or precursor levels. In particular, this system can fabricate scaffolds capable of holding a biocompatible surface on an entire 3D-printed strut. Thus, our one-step 3D printing approach is a promising platform to overcome the limitations of current biocompatible 3D scaffold engineering.

Funder

Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare

R&BD Program through the INNOPOLIS funded by Ministry of Science and ICT

National Research Foundation of Korea (NRF) grant funded by the Korean government

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3