A perfusable vascularized full-thickness skin model for potential topical and systemic applications

Author:

Salameh SachaORCID,Tissot Nicolas,Cache Kevin,Lima Joaquim,Suzuki Itaru,Marinho Paulo André,Rielland Maité,Soeur Jérémie,Takeuchi ShojiORCID,Germain Stéphane,Breton Lionel

Abstract

Abstract Vascularization of reconstructed tissues is one of the remaining hurdles to be considered to improve both the functionality and viability of skin grafts and the relevance of in vitro applications. Our study, therefore, sought to develop a perfusable vascularized full-thickness skin equivalent that comprises a more complex blood vasculature compared to existing models. We combined molding, auto-assembly and microfluidics techniques in order to create a vascularized skin equivalent representing (a) a differentiated epidermis with a physiological organization and correctly expressing K14, K10, Involucrin, TGM1 and Filaggrin, (b) three perfusable vascular channels with angiogenic sprouts stained with VE-Caderin and Collagen IV, (c) an adjacent microvascular network created via vasculogenesis and connected to the sprouting macrovessels. Histological analysis and immunostaining of CD31, Collagen IV, Perlecan and Laminin proved the integrity of vascular constructs. In order to validate the vascularized skin potential of topical and systemic applications, caffeine and minoxidil, two compounds with different chemical properties, were topically applied to measure skin permeability and benzo[a]pyrene pollutant was systemically applied to evaluate systemic delivery. Our results demonstrated that perfusion of skin reconstructs and the presence of a complex vascular plexus resulted in a more predictive and reliable model to assess respectively topical and systemic applications. This model is therefore aimed at furthering drug discovery and improving clinical translation in dermatology.

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3