Abstract
Abstract
Vascularization of reconstructed tissues is one of the remaining hurdles to be considered to improve both the functionality and viability of skin grafts and the relevance of in vitro applications. Our study, therefore, sought to develop a perfusable vascularized full-thickness skin equivalent that comprises a more complex blood vasculature compared to existing models. We combined molding, auto-assembly and microfluidics techniques in order to create a vascularized skin equivalent representing (a) a differentiated epidermis with a physiological organization and correctly expressing K14, K10, Involucrin, TGM1 and Filaggrin, (b) three perfusable vascular channels with angiogenic sprouts stained with VE-Caderin and Collagen IV, (c) an adjacent microvascular network created via vasculogenesis and connected to the sprouting macrovessels. Histological analysis and immunostaining of CD31, Collagen IV, Perlecan and Laminin proved the integrity of vascular constructs. In order to validate the vascularized skin potential of topical and systemic applications, caffeine and minoxidil, two compounds with different chemical properties, were topically applied to measure skin permeability and benzo[a]pyrene pollutant was systemically applied to evaluate systemic delivery. Our results demonstrated that perfusion of skin reconstructs and the presence of a complex vascular plexus resulted in a more predictive and reliable model to assess respectively topical and systemic applications. This model is therefore aimed at furthering drug discovery and improving clinical translation in dermatology.
Subject
Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献