Bioscaffold developed with decellularized human amniotic membrane seeded with mesenchymal stromal cells: assessment of efficacy and safety profiles in a second-degree burn preclinical model

Author:

Naasani Liliana Ivet Sous,Pretto Luiza,Zanatelli Carla,Paim Thaís Casagrande,Souza Aline Francielle Damo,Pase Pablo Fagundes,Fernandes Marilda Da Cruz,Sévigny Jean,Wink Márcia RosângelaORCID

Abstract

Abstract Therapies to deep burn injuries remain a global challenge. Human amniotic membrane (hAM) is a biomaterial that has been increasingly explored by the field of regenerative medicine. A decellularized hAM (DhAM) can be used as scaffold for mesenchymal stromal cells (MSCs) to grow without the loss of their stemness potential, allowing its application as cell therapy for wound healing. In this work, we associated DhAM with adipose-derived MSCs (DhAM + AD-MSCs), as a therapy strategy for second-degree burns in a preclinical model. Animals with induced second-degree burns were divided into four groups: control, which consists of a non-adherent gauze; a synthetic commercial dressing as the positive control (Control+); DhAM; and DhAM plus rat AD-MSCs (DhAM + AD-MSCs), followed by detailed and long term analysis (5 weeks). The macroscopical analysis showed the healing improvement in the wound area after the DhAM + AD-MSC treatment. Histological analysis also showed no alteration in the animal organs and a regular epithelial progression in comparison to the control. This observation was also confirmed by the analysis of suprabasal layers in the neoepidermis with CK10, showing a stratified and differentiated epithelium, when compared to Control and Control+. A strong CD73 (ecto-5′-nucleotidase) labeling was observed in the first 2 weeks postburn in dermis and epidermis. The expression in dermis was stronger in the second week in the middle of the wound, when comparing the Control+ with DhAM + AD-MSCs (p = 0.0238). In the epidermis the expression of CD73 was increased in all regions when compared to the control. This data suggests the involvement of this protein on wound healing. A low CD11b labeling was observed in DhAM + AD-MSCs treatment group mainly in the last treatment week, in comparison to Control and Control+ (p < 0.0001), which indicates a reduction in the inflammatory process. MSCs through CD73 can release high concentrations of adenosine, an immunosuppressive molecule, suggesting that this could be the mechanism by which the inflammation was better modulated in the DhAM + AD-MSCs group. The results obtained with this preclinical model confirm the effectiveness and safety of this low-cost and highly available dressing for future clinical application as a therapy for burn treatments.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) MS-SCTIE-Decit/CNPq

MS-SCTIE-DECIT-DGITIS-CGCIS/CNPq

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, FAPERGS/MS/CNPq/SESRS

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3