A digital light processing 3D printed magnetic bioreactor system using silk magnetic bioink

Author:

Ajiteru OlatunjiORCID,Choi Kyu YoungORCID,Lim Tae Hyeon,Kim Do Yeon,Hong HeesunORCID,Lee Young Jin,Lee Ji Seung,Lee Hanna,Suh Ye Ji,Sultan Md Tipu,Lee Ok Joo,Kim Soon HeeORCID,Park Chan HumORCID

Abstract

Abstract Among various bioreactors used in the field of tissue engineering and regenerative medicine, a magnetic bioreactor is more capable of providing steady force to the cells while avoiding direct manipulation of the materials. However, most of them are complex and difficult to fabricate, with drawbacks in terms of consistency and biocompatibility. In this study, a magnetic bioreactor system and a magnetic hydrogel were manufactured by single-stage three-dimensional (3D) printing with digital light processing (DLP) technique for differentiation of myoblast cells. The hydrogel was composed of a magnetic part containing iron oxide and glycidyl-methacrylated silk fibroin, and a cellular part printed by adding mouse myoblast cell (C2C12) to gelatin glycidyl methacrylate, that was placed in the magnetic bioreactor system to stimulate the cells in the hydrogel. The composite hydrogel was steadily printed by a one-stage layering technique using a DLP printer. The magnetic bioreactor offered mechanical stretching of the cells in the hydrogel in 3D ways, so that the cellular differentiation could be executed in three dimensions just like the human environment. Cell viability, as well as gene expression using quantitative reverse transcription-polymerase chain reaction, were assessed after magneto-mechanical stimulation of the myoblast cell-embedded hydrogel in the magnetic bioreactor system. Comparison with the control group revealed that the magnetic bioreactor system accelerated differentiation of mouse myoblast cells in the hydrogel and increased myotube diameter and length in vitro. The DLP-printed magnetic bioreactor and the hydrogel were simply manufactured and easy-to-use, providing an efficient environment for applying noninvasive mechanical force via FDA-approved silk fibroin and iron oxide biocomposite hydrogel, to stimulate cells without any evidence of cytotoxicity, demonstrating the potential for application in muscle tissue engineering.

Funder

Hallym University

Korea Health Industry Development Institute

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3