In vitro reconstitution of the hormone-responsive testicular organoids from murine primary testicular cells

Author:

Yang Yan,Huang Rufei,Cao Zhen,Ma Siying,Chen Derong,Wang Zhaoyang,Feng Yuqing,Lei Yaling,Zhang Qihao,Huang YadongORCID

Abstract

Abstract Increasing rates of male infertility require more experimental models to understand the mechanisms underlying male infertility. In vitro organoids hold unprecedented promise for this purpose; however, the development of organoids with tissue architecture similar to that of the testis in vivo remains a challenge. Here, we generated testicular organoids derived from testicular cells by combining a hanging drop culture and a rotation culture system. Our results indicated that testicular cells could self-assemble into spheroid organoids with tubule-like structures in hanging drop culture. The organoids can subsequently be cultured and maintained in a rotation culture system. These established organoids have gene expression profiles similar to those of adult testis tissue, produce testosterone with preserved gonadotropin responsiveness, and exhibit sensitivity to reproductive toxicants. More importantly, each testicular organoid can be generated from only 2000 cells, and they maintain their proliferative ability after freezing and thawing. These features make it possible to obtain fresh primary testis cells from testicular biopsies taken from patients or endangered wild species, and to build individual-specific biobanks. These findings will help enable the exploration of self-organization process of testicular cells and provide an experimental model for reproductive biology research, pharmacotoxicology testing, and regenerative medicine.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Guangzhou Science and Technology Program

Science and Technology Plan Project of Guangzhou

Special Innovation Projects of Universities

Key Project

Guangdong Province

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3