Abstract
Abstract
Creating a vasculature in engineered human skeletal muscle tissues (ehSMTs) enables us to create thick tissues, increase cell survival in implantation, provide models of blood-organ barriers for drug testing, and enhance muscle differentiation through paracrine signaling. Here, contractile ehSMTs with a central perfusable vascular channel and microvascular networks growing from this central vasculature into the surrounding skeletal muscle tissue were newly demonstrated. Because coculturing muscle cells and endothelial cells requires incompatible media, we recapitulated the in vivo extracellular fluid compartments between blood plasma and interstitial fluid by creating an in vitro perfusable vasculature running through skeletal muscle tissue with a physiologic cell density. By using this model, we constructed large vascularized ehSMTs and showed the potential to be utilized for drug testing platforms. Also, we found that coculturing with two separate media from an early stage of muscle differentiation led to increased contractile force, thicker myotubes, and improved muscle differentiation.
Funder
Science and Technology Center for Emergent Behaviors of Integrated Cellular Systems
National Science Foundation
Japan Society for the Promotion of Science
Subject
Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献